РАЗРАБОТКА И ИССЛЕДОВАНИЕ УЛЬТРАМЕЛКОЗЕРНИСТЫХ МАТЕРИАЛОВ НА ОСНОВЕ ВОЛЬФРАМА ПРИ ВЫСОКОСКОРОСТНОМ СОУДАРЕНИИ

С.А. Афанасьева, Н.Н. Белов, Ю.А. Бирюков, В.В. Буркин, А.Н. Ищенко, А.Н. Табаченко, М.В. Хабибуллин, Н.Т. Югов

Томский государственный университет, г. Томск, Россия <u>s.a.afanasyeva@mail.ru</u>

В данной работе рассмотрены некоторые особенности получения сплавов системы вольфрам-никель (W+Ni) (BH) и вольфрам-никнль-железо-кобальт (W+Ni+Fe+Co) (BHЖK), в том числе высокопористые материалы, методом жидкофазного спекания порошкообразных заготовок, содержащих наноразмерные вольфрамовые порошки. Проведен анализ проникающей способности цилиндрических стержней из этих материалов в стальные преграды при высокоскоростном ударе.

Известно, что конечные свойства спеченного материала определяются структурными факторами: средним размером зерен, их распределением по размерам, состоянием границ зерен, степенью искажения кристаллической решетки и др. Применение наноразмерных порошковых компонент может оказать существенное влияние на их свойства. Для исследования динамических свойств сплавов системы ВН были использованы порошки вольфрама W-0.8 различной дисперсности.

Измельчение И классификация порошков вольфрама осуществлялась R пневмоциркуляционном аппарате. В основе используемого метода переработки порошковых материалов [1] лежит управляемое циркуляционное движение гетерогенных потоков в замкнутых объемах с помощью газовых струй. Исходный порошок вольфрама W-0.8 подвергался двум ступеням воздушно-центробежной классификации. Исследование гранулометрического состава порошков проводилась на лазерном дифрактометре «Mastersizer 2000». Гистограммы гранулометрического состава исходного порошка W-0.8 (рис. 1 а) и измельченного на первой (рис. 1 б) и второй (рис. 1 в) ступенях воздушноцентробежной классификации иллюстрируют степень измельчения порошка от 7-8 мкм до 0,6-0,7 мкм и 0,4-0,6 мкм.

Следует отметить, что как на первой, так и на второй ступенях воздушноцентробежной классификации наблюдается присутствие порядка 20-25 % достаточно мелких фракций порошка вольфрама с размером от 0,1 до 0,2 мкм. Для установления возможного загрязнения порошка во время измельчения использовалось два метода: рентгенофлуоресцентный и рентгеноструктурный. Элементный состав материала определяется на последовальном рентгенофлуоресцентном волнодисперсном спектрометре «Shimadzu XRF 1800». Фазовый состав определяется на дифрактометре «Shimadzu XRD 6000». Из полученных данных на дифрактометре следует, что W-0.8 исходный и W-0.8 измельченный полностью совпадают по химическому составу.

Образцы для динамических испытаний были получены спеканием порошковых смесей из вольфрама и никеля, а также с дополнительным легированием железом и кобальтом - сплавов системы вольфрам-3d-металлы. Для спекания образцов системы BH-91 (91% вольфрама) качестве вольфрамового порошка использовался порошок вольфрама W-0,8 в состоянии поставки (рис. 1 *a*) и этот же порошок, но измельченный в двух вариантах – классификацией порошков на первой (рис. 1 *б*) и второй (рис. 1 *в*) ступенях воздушноцентробежной классификации (сплавы BH-91 (Ц1) и BH-91 (Ц2) соответственно). Молотые порошки вольфрама оказались с повышенными адгезионными и когезионными свойствами. В качестве никеля использовали порошок марки ПНК1-ОТ2. Спекание спрессованных образцов осуществляли в электропечи сопротивления СНВЭ-131/16-И в вакууме в течение времени до 1 часа при температуре на 50° С выше минимума линии ликвидус диаграммы состояния системы вольфрам-никель. Цилиндрические образцы диаметром 18,5 мм и высотой до 50 мм были получены на гидравлическом прессе в специальной прессформе для двухстороннего прессования.

В табл. 1 представлены характеристики образцов серии ВН-91 для динамических испытаний, полученных методом спекания из порошковых заготовок.

					Таблица 1.
N⁰	Состав	Исходная	Конечная	Конечная	Твердость,
п/п		пористость	плотность	пористость,	ед. H _{RA}
		заготовки, %	(р), г/см ³	ξ,%	
1	BH-91	46,96	16,5904	3,121	74,7
2	BH-91	62,39	16,6570	2,733	72,9
3	ВН-91 (Ц1)	42,76	16,8764	1,452	75,7
4	ВН-91 (Ц2)	40,08	16,2995	4,820	72,4

Пористость материалов определялась по формуле $\xi = (1 - \rho/\rho_0) \cdot 100\%$, где ρ - средняя плотность материала; ρ_0 - плотность материала матрицы.

На рис. 2 представлена структура спеченных сплавов ВН-91 после излома, полученная на растровом микроскопе SEM 515 Philips. Используемые порошки вольфрама: а – исходный (рис. 1 *a*), δ – на первой ступени классификации (рис. 1 δ), ϵ – на второй ступени классификации (рис. 1 ϵ).

Рис. 2.

Видно, что имеется закономерная связь между средними размерами исходных порошков вольфрама и зеренной структурой спеченных сплавов вольфрам-никель.

Аналогичная закономерность наблюдается при получении сплавов системы вольфрам-3d-металлы: (W+Ni+Fe+Co) ВНЖК. Данные композиты были получены по той же технологии, что и сплав ВН-91, дополнительным введением порошковых компонент: химически чистого карбонильного железа и кобальта марки К-1, с 90 % содержания вольфрама W-0.8. Высокопористые материалы получаются путем введения в порошковую заготовку, кроме компонент матрицы, хорошо возгоняемых веществ, которые в сплаве оставляют после себя пустоты.

Из разработанных составов получены опытные цилиндрические образцы для составных ударников. На рис. 3 представлены образцы пористых материалов № 101, № 122, № 117 с матрицей ВНЖК и в табл. 2 их характеристики.

Nº 101 Nº122 № 117

Рис. 3

		Таблица 2.
N⁰	Плотность	Пористость
образца	ρ, г/см ³	ξ , %
101	15.800	7,6
122	10.097	41
117	8.040	53

Проведены баллистические испытания ударников проникающего типа и математическое моделирование их взаимодействия со стальными бронеплитами с применением методик [2,3].

Ударник с сердечником из сплава ВН-91 представляет собой стакан из текстолита и полиэтилена, внутри которого находится испытуемый образец. Масса ударника в сборке равна 154 г. Масса сердечника - 113.5 г. Диаметр ударника 30 мм. Диаметр сердечника 17 мм. На рис. 4 представлена расчетная картина взаимодействия составного ударника с бронепреградой толщиной 120 мм в различные моменты времени и фото лицевой стороны бронеплиты с остатком ударника после соударения со скоростью 2062 м/с. В результате соударения в бронеплите образовался кратер глубиной 74 мм диаметром 48 мм. Поддон ударника сработался, масса остатка сердечника равна m_{ocr} = 58 г. Глубина расчетного кратера – 77.4 мм (расхождение с экспериментом 4 %), диаметр расчетного кратера и масса сердечника совпадают с экспериментом. Как видно из хронограммы проникания, полиэтиленовая часть поддона сработалась к 20 мкс, к 60 мкс сработалась текстолитовая часть поддона. Процесс внедрения сердечника продолжался до его полной остановки при 145 мкс.

Фото бронеплиты Рис. 4

Как показали результаты теоретических расчетов (На рис. 5 приведены конфигурации бронеплиты и ударника при различных скоростях удара на момент пробития), увеличение скорости ударника, приводит к пробитию бронеплиты.

При 3000 м/с: масса остатка сердечника m_{oct} = 28 г, а его скорость – 57 м/с; при 3500 м/с: m_{oct} = 29.6 г, скорость – 456 м/с; при 4000 м/с: m_{oct} = 24.9 г, скорость – 641 м/с. Кинетическая энергия остатка ударников равна соответственно: 0.009 кДж, 6.15 кДж, 9.98 кДж. Таким образом, увеличение скорости существенно повышает бронебойность ударника.

Ниже проводятся результаты баллистических испытаний ударников с сердечниками из пористых материалов (образцы № 101, № 122, № 117. Ударники изготовлены одинаковой массы и диаметра. Сердечники помещались в текстолитовые поддоны. Масса ударника в сборке 50 г. Масса сердечников 30 г. Диаметр ударника 30 мм. Диаметр сердечника 13 мм. Стальная бронеплита толщиной 90 мм. Скорость удара 2817 м/с. На рис. 6 представлены фотографии бронеплит после соударения с ударниками: a – левый кратер от ударника с монолитным сердечником из сплава штатного состава ВНЖ-95; δ – правый кратер от ударника с сердечником из образца № 101; e - кратер от ударника с сердечником из образца № 122; z - кратер от ударника с сердечником из образца № 101; e - кратер от ударником из сплава ВНЖ-95 (в скобках указано превышение глубины кратера по отношению к глубине кратера от ударника с сердечником из ВНЖ-95).

г

а б

Рис. 6.

в

		Таблица 2
.№ образца	Диаметр кратера	Глубина кратера
	<i>D</i> , мм	<i>L</i> , мм
101	33	37 (+4 %)
122	31	41,5 (+17 %)
117 (эксп.)	-	-
117 (расч.)	18,5	45,4 (28 %)
внж-95	30.5	35.5

Эксперимент по метанию ударника с сердечником из образца № 117 (высокопористого) оказался «неудачным». Очевидно, при выстреле ударник разрушился в канале ствола. В результате чего не удалось достичь необходимой скорости метания. Судя по следам воздействия, разрушенные части ударника не оставили видимого кратера в бронеплите. Высокопористый сердечник оказался непригодным из-за отсутствия достаточной прочности. Каким бы был результат взаимодействия, если бы данным ударником удалось выстрелить с заданной скоростью 2817 м/с? С этой целью проведен расчет по методике [3]. На рис. 7 и табл. 2 (четвертая строка) представлен результат расчета соударения ударника из образца № 117 массой 30 г в бронеплиту толщиной 90 мм со скоростью удара 2817 м/с. При 65 мкс процесс проникания завершен. На дне кратера наблюдается остаточная часть сердечника. На рисунке в левой части показаны зоны с различным остаточным давлением в материале

(- 0.7...- 0.2 ГПа □; - 0.2...0.3 ГПа белое поле; 0.3...0.5 ГПа +; 0.5...0.8 ГПа ×), справа темный фон – разрушение. Глубина кратера составила 45,4 мм, что на 28% превышает глубину кратера от ударника с сердечником из ВНЖ-95.

Таким образом, ударники из разработанных материалов обладают высокой проникающей способностью. Подтверждено более глубокое проникание пористых сердечников с матрицей из сплава ВНЖК по сравнению с монолитным ударником, равным по массе и диаметру, как это показано для пористых ударников с матрицей из стали и ВНЖ-90 в [4,5].

Работа выполнена при поддержке гранта РФФИ № 10-01-00573а.

Литература

1. Белов Н.Н., Бирюков Ю.А., Росляк А.Т., Югов Н.Т., Афанасьева С.А. Механизм измельчения частиц при получении субмикронных порошков тугоплавких соединений в пневмоциркуляционном аппарате // Доклады Академии наук. 2004. 397(3).

2. Югов Н.Т., Белов Н.Н., Югов А.А. Расчет адиабатических нестационарных течений в трехмерной постановке (РАНЕТ-3) // Федеральная служба по интеллектуальной собственности, патентам и товарным знакам. Свидетельство о государственной регистрации программ для ЭВМ № 2010611042. Москва. 2010.

3. Хабибуллин М.В. Численное моделирование взаимодействия высокоскоростного ударника с системой пространственно разнесенных мишеней// ВАНТ. Сер. Математическое моделирование физических процессов. 1997. Вып.3. С. 18-24.

4. Афанасьева С.А., Белов Н.Н., Козорезов К.И., Хабибуллин М.В., Югов Н.Т. Особенности высокоскоростного проникания сильно пористого ударника в мишень конечной толщины // ДАН РФ. 1997. Т. 355, № 2. С. 192-195.

5. Афанасьева С.А., Белов Н.Н., Крамшонков Е.Н., Хабибуллин М.В. Исследование проникания пористого ударника в полубесконечную мишень // Исследования по баллистике и смежным вопросам механики: Сборник статей. Вып.2. Томск: Изд-во Том. ун-та, 1998. С. 99-102.