

VISUALIZATION OF REACTIVE BUOYANCY-DRIVEN INSTABILITIES

C. Almarcha^{1,c}, P. Grosfils², A. De Wit²

¹IRPHE, UMR 7342, 49, rue F. Joliot Curie, 13013 Marseille, France ²NLPC, ULB, Campus Plaine, 1050 Brussel, Belgium

^cCorresponding author: Tel.: +33413552025; Fax: +33413552001; Email: Almarcha@irphe.univ-mrs.fr

KEYWORDS:

Main subjects: Experimental and computational fluid mechanics, reactive flows Fluid: acid-base reactive flows Visualization method(s): Schlieren, interferometry, particle image velocimetry Other keywords: image processing, color indicator

ABSTRACT: The study of buoyancy instabilities induced by chemical reactions has gained renewed interest because of their implications in CO_2 sequestration techniques. The theoretical models describing the evolution of the unstable interface between two miscible solutions, each containing a reactant, have to be compared to laboratory-scale experiments. We expose the diverse visualization methods we used to experimentally study the related buoyancy-driven instabilities of chemical fronts and their possible influence on the dynamics. This way, quantitative comparison with numerical simulations give good agreements.

References

1. Almarcha C. et al. Chemically driven Hydrodynamic Instabilities. Phys. Rev. Lett. 2010, 104, 044501

2. Almarcha C. et al. Active Role of a Color Indicator in Buoyancy-Driven Instabilities of Chemical Fronts. J. Phys. Chem. Lett. 2010, 1, 752-757

3. Almarcha C. et al. Convective mixing induced by acid-base reactions. J. Phys. Chem. B 2011, 115, 9739-9744