Государственное научное учреждение «Институт тепло- и массообмена имени А.В.Лыкова» Национальной Академии Наук Беларуси Отдел быстропротекающих процессов

Зондовый измеритель высокой температуры 4-х канальный помехоустойчивый

(экспериментальная модель)

Инструкция по эксплуатации

Минск Октябрь 2014

Оглавление

Введение	3
Основные технические характеристики	4
Структурные схемы и принцип работы	5
Термозонды	5
Блок управления	6
Подключение, подготовка к работе, органы управления	8
Органы управления	8
ПОДГОТОВКА К РАБОТЕ, ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ.	10
Программное управление. Пользовательский интерфейс	11
Старт, Стоп, Режимы индикации	11
Настройки	15
Закладка "Common"	16
Закладка "Channels"	19
Закладка "Fitting parameters"	21
Закладка "Miscellaneous"	23
Комплект поставки	25
Контакты	26

Введение

Данный прибор разработан для замены традиционных измерителей, таких как термопары, терморезисторы, радиационные пирометры в области высоких (> 600 °C) температур в присутствии сильных электромагнитных полей. Возможные области применения: микроволновый и индукционный нагрев, высоковольтные системы, оборудование с высоким уровнем электромагнитных помех. Измерение производится контактным способом с помощью погружаемых термозондов.

Принцип работы заключается в следующем - оптическая система измерителя высокой температуры собирает тепловое излучение со дна термозонда и передает его по оптоволоконному кабелю в многоканальный микромеханический оптический коммутатор и далее в спектрофотометр. Температура определяется как параметр спектрального распределения регистрируемого излучения в видимом и ближнем инфракрасном диапазоне путём прямой подгонки данных спектрофотометра к закону Планка.

Такой способ измерения практически исключает влияние мощных электромагнитных полей на показания температуры там, где термопары выходят из строя или достоверность их показаний вызывает сомнение (в СВЧ и индукционных печах, в электротермических реакторах, в нагревателях под высоким потенциалом и т.д.).

радиационных В отличие широко распространённых пирометров ОТ отношения, оптический путь собираемого излучения полностью закрыт, применена объект(керамика) волоконная оптика, излучающий имеет стабильные характеристики, алгоритм вычисления совершенно иной, что значительно повышает достоверность измерений в широком диапазоне точность И температур, ограниченном сверху только стойкостью материала зонда.

Термозонды разрабатываются и изготавливаются на основе промышленно выпускаемых защитных керамических чехлов, предназначенных для установки в них термопар, а значит, имеют стандартные размеры и соединительные фитинги.

Основные технические характеристики

• Чис	ло каналов измерения:	4
• Диа	апазон измеряемой температуры:	600-1650 °C
 Пог 	решность (ожидаемая):	± 0.5 %
• Пер	риодичность калибровки (ожидаемая)	1 раз в год
• Длі	ина оптоволоконных кабелей	5 м.
• Пит	ание:	
_	однофазная сеть	100-240 В, 50/60 Гц
_	или источник постоянного напряжения	12–19 B, 4 A
• Диа	апазон рабочих температур:	0–35 °C
• Раз	меры и масса (ориентировочно):	
_	Блок управления	230х180х113 мм; 2.6 кг
_	Термозонды	arnothing11.1-28х495 мм; 0.22 кг
		Ø12.7-28х645 мм; 0.26 кг

Структурные схемы и принцип работы

$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 2 \\ 7 \end{array}$

Термозонды

Рисунок 1. Термозонд коллиматорного типа

1 - пятно сбора излучения, 2 - путь излучения, 3 - керамический чехол, 4 стандартный фитинг, 5 — узел юстировки, 6 - линза, 7 - оптоволоконный кабель

В комплект поставки прибора входят 4 термозонда коллиматорного типа с фитингами 1/2" NPT. Два из них имеют керамическую трубку внешним диаметром 11,1 мм и длиной 450 мм, оставшиеся - Ø12,7 х 600 мм. Материал трубки, согласно данным производителя, 85% mullite + 15% glass, максимальная температура использования 1750 °C. С основным блоком зонды соединяются армированными оптическими кабелями длиной 5 м, оконцованными оптическими разъёмами стандарта FC-PC. Блок управления.

Рисунок 2. Структурная схема блока управления

Оптический сигналы с термозондов по волоконным кабелям, армированным гибкой трубкой из нержавеющей стали, поступают на оптические входы блока управления и последовательно коммутируются оптическим переключателем на вход спектрофотометра. Оптический переключатель изготовлен по MEMS (микроэлектромеханической) технологии, имеет малое время коммутации(несколько миллисекунд) и не содержит механически изнашиваемых элементов.

Спектрофотометр регистрирует излучение в диапазоне длин волн 650 – 1100 нм с оптическим разрешением ~ 1.5 нм. Для улучшения стабильности и повторяемости измерений спектрофотометр помещён в прецизионный термостат, стабилизирующий температуру корпуса прибора с точностью не хуже ±0.1°С.

Управление процессом измерения осуществляет x86-совместимый компьютер со следующими основными параметрами:

- процессор Intel Core i5-4250U;
- оперативная память 4 GB;
- SSD 128 GB, опционально возможна установка HDD SATA формата 2.5";
- дисплей сенсорный резистивный, диагональ 7", 800х480 пикселей
- операционная система Windows 7;

Питание всех компонентов блока управления производится от однофазной сети через адаптер с выходным напряжением 19 В постоянного тока и максимальной мощностью 65 Вт.

Подключение, подготовка к работе, органы управления.

HIGH TEMPERATURE METER: 4-CHANNELS C 1028,2 R2 = 0.999997Â, 1050 9 Ø 1045 4 1040 X 2 \mathbf{x} 1035 1030 3 1025 Y 50 100 150 4 5 М Thermostat is ready Board t= 16,10, uC t= 42,89 Working ... 30 октября 2014 г. 13:23:32

Органы управления

Рисунок 3. Передняя панель и сенсорный дисплей

1 — кнопка 'Power', 2 — кнопка включения/выключения/переключения входов сенсорного дисплея, 3 — кнопка регулировки яркости подсветки дисплея, 4 — гнездо карты памяти формата SD, 5 — гнездо USB;

На задней панели блока управления(**Рис.4**) размещены оптические коннекторы, разъёмы компьютера и дисплея. Красными линиями обозначены оптические соединения, оранжевыми – электрические, для работы в автономном режиме и зелёными – возможные подключения внешних(не поставляются с данным прибором) дисплеев, клавиатуры и мыши с USB подключением, обеспечивающих более комфортную работу с управляющей программой и операционной системой, а также компьютерной сети(LAN) стандарта 10/100/1000BASE-T.

В минимальной конфигурации должен быть использован хотя бы один термозонд, подано питание через сетевой адаптер и подключен штатный дисплей кабелем HDMI-miniHDMI из комплекта поставки. Управление при этом осуществляется с использованием сенсорного дисплея, стилусом или пальцем руки. Не используйте для этой цели острые предметы, они могут повредить экран ! Для управления режимами работы монитора может быть использован также пульт дистанционного управления.

Рисунок 4. Задняя панель. Схема коммутации

Подготовка к работе, включение и выключение.

Для приведения измерителя в рабочее состояние выполните следующие действия:

- разместите и закрепите термозонды в зоне измерений используя штатные фитинги. Будьте осторожны, керамические трубки хрупкие, их легко разбить!
- разместите блок управления на расстоянии до 5 м от зондов, произведите оптическую и электрическую коммутацию согласно Рис.4. Номера оптического входа, термозонда и оптоволоконного кабеля должны совпадать. Не прилагайте больших усилий в обращении с оптическими компонентами – волоконными кабелями и разъёмами, их легко повредить или нарушить юстировку! Содержите оптические соединители в чистоте, сразу закрывайте неиспользуемые компоненты штатными колпачками, загрязнения могут повлиять на точность измерений!
- подключите сетевое питание, подсветка кнопок 2 и 3 (Рис.3) должна включиться, это индицирует подачу напряжения на дисплей, компьютер и контроллер термостата, рабочий режим спектрофотометра установится через 1-5 мин., в зависимости от окружающей температуры.
- Для загрузки операционной системы и управляющей программы нажмите кнопку 'Power' (**Рис.3**) действуйте далее в соответствии с инструкцией по программному управлению.

Для завершения работы нажмите кнопку 'Power' и дождитесь когда погаснет её индикация. Теперь можно отключить сетевое питание.

Программное управление. Пользовательский интерфейс

После включения измерителя (нажатием кнопки "Power") встроенный компьютер загружает операционную систему (Widows7) и запускает управляющую программу (далее по тексту - Программа) с сохраненными настройками. Далее управление осуществляется с помощью сенсорного экрана измерителя, либо, при наличии, внешней стандартной мышью и (или) клавиатурой.

Старт, Стоп, Режимы индикации.

Основное окно Программы после начального запуска имеет вид:

Рисунок 5

- кнопки управления;

• - панели вывода результатов измерений;

время, состояние процесса измерений.

- панель дополнительной информации, отображающей: текущее состояние термостата, системные дату и

Нажатием кнопки "СТАРТ" (Рис.5) запускается непрерывный процесс последовательных измерений температуры по

каждому из разрешенных каналов (о настройке каналов – далее в данном руководстве) с выводом результатов на панели

На **Рис.6** – вид экрана измерителя, выполняющего измерение температуры по 4-м каналам с записью полученных данных в файлы. Для останова процесса измерений – нажать на кнопку "СТОП".

Панель вывода результатов измерений (Рис.7)

Рисунок 7.

содержит:

- - номер канала измерений (1);
- измеренную температуру (2) результат последнего по времени измерения; значение "NaN" (not a number) в этом поле выводится в случае невозможности определения температуры (низкий уровень сигнала);

- график изменения температуры (3) за последние 300 секунд измерений (по оси Х время от начала измерений, в секундах, по оси Ү – температура, в градусах по Цельсию);
- индикатор (4) разрешения записи данных в текстовый файл (для показа имени записываемого файла нажать на индикатор); если индикатор (4) не отображен, для этого канала запись в файл не производится (о настройке каналов – далее в данном руководстве).

Нажатие на панель вывода результатов измерений (**Рис.7**) приводит к изменению режима отображения информации (**Рис.8**):

Рисунок 8.

В режиме отображения расширенной информации по выбранному каналу (**Рис.8**) на экран выводится результат последнего измерения с оценкой R² и график изменения температуры. График может содержать до 100000 измерений (по оси X –

время от начала измерений, в секундах, по оси Y – температура, в градусах по Цельсию). Панели управления осями X и Y предназначены для масштабирования и прокрутки графика. Кроме того, Программа поддерживает автоматический ZOOM выделенного на графике прямоугольника (удобно использовать при наличии мыши). Данные измерений по остальным каналам отображаются в компактной форме на панели последних измерений. Для переключения канала отображения расширенной информации необходимо нажать на панель последних измерений требуемого канала (**Рис.8**). Кнопка "HOME" служит для перехода к основному режиму отображения, приведенному на **Рис.6**.

Кнопка "Windows Explorer" (**Рис.5**) служит для запуска Проводника Windows и может быть использована для манипулирования сохраненными текстовыми файлами измерений.

Настройки.

Кнопка "Настойки" (**Рис.5**) служит для перехода в режим просмотра и редактирования настроек программного управления. Окно настроек (**Рис.9**) содержит 4 закладки (о закладках подробнее – далее по тексту)

- Common;
- Channels;
- Fitting parameters;
- Miscellaneous;

и панель управления с кнопками:

Кнопка	Функция кнопки				
Apply changes and close	Сохранить произведенные в настройках изменения и закрыть окно				
	настроек.				
Discard changes	Отказаться от всех произведенных изменений и закрыть окно настроек.				
Reset to default settings	Привести все настройки к значениям по умолчанию (это не относится к				
	теневым спектрам, калибровочным данным, настройкам каналов				
	измерений).				
Restore factory settings and calibration data	Полный "откат" всех настроек к состоянию на момент поставки прибора,				
	включая сохраненные теневые спектры и настройки каналов и датчиков с				
	калибровочными данными. Текущие настройки будут утеряны.				

Закладка "Common"

Элементы и их назначение (Рис.9):

Элемент закладки	Назначение				
Кнопка выбора папки	Текстовое поле рядом с кнопкой содержит имя папки, в которой сохраняются				
	текстовые файлы с результатами измерений (при условии, что запись в				
	файлы разрешена – смотри настройки каналов). После старта процесса				
	измерений в указанной папке создается новая папка с именем				
	"ДД_ММ_ГГГГ", в которой будут храниться файлы с именами вида				
	КК_ЧЧММСС_NN.txt (где КК-номер канала; ЧЧММСС и NN – часы, минуты,				
	секунды и сотые доли секунды момента начала измерений по каналу).				
	Файлы результатов измерений могут сохраняться ТОЛЬКО на внешних				
	носителях (SD-card, USB flash-disk). Нажатие кнопки запускает стандартный				
	диалог выбора папки.				
Индикатор готовности датчиков	Ready – только в том случае, если, как минимум, один канал измерений				
	разрешен и для всех разрешенных каналов обнаружены калибровочные				
	данные.				
Индикатор готовности теневых спектров	Ready – данные о теневых спектрах готовы.				
Расширенные настройки (кнопка	Нажать на кнопку для получения доступа к процедуре сбора теневых				
Advanced)	спектров. Окно настроек принимает вид, изображенный на Рис.10. Нажатие				
	на появившуюся кнопку "Collect dark spectra" приведет к старту процедуры				
	сбора теневых спектров. Запускать эту процедуру без необходимости				
	НАСТОЯТЕЛЬНО НЕ РЕКОМЕНДУЕТСЯ.				

Рисунок 9.

HTM settings						
Common	Channels	Fitting parameters	Miscellaneous			
Path to save	e log data files					
Sensors	Ready					
Dark spectra	Ready					
Advanced						
Collect dar	rk spectra					
Ń	Apply change and close	25 Discard cha	anges Res	et to default settings	Restore factory s and calibration	ettings data

Рисунок 10.

Закладка "Channels"

Элементы и их назначение (Рис.11):

Элемент закладки	Назначение
Панель (таблица) настройки каналов	Таблица состоит из 4-х строк (по количеству каналов измерителя), каждая из которых отображает: номер канала (#), включен/выключен (Enable), разрешена/запрещена запись результатов измерений в файл (Log), имя подключенного датчика (Sensor connected), наличие калибровочных данных (Sensor state), кнопка запуска калибровки. Для изменения установок " Enable " и "Log" любого канала необходимо нажать на соответствующую ячейку таблицы
Панель подключенных (connected) и доступных (available) датчиков	Содержит список подключенных датчиков и, возможно (датчиков может быть больше, чем каналов измерителя), список дополнительных доступных датчиков.
Панель кнопок	Содержит кнопки манипулирования подключением датчиков.

Для подключения и отключения датчиков можно воспользоваться как кнопками панели так и "перетаскиванием" (drag&drop) выбранного датчика в "черную коробку" либо в свободную ячейку панели настройки каналов.

Только каналы с подключенными калиброванными датчиками могут участвовать в процессе измерений температуры. Кнопка "Calibrate/Recalibrate" служит для запуска процедуры калибровки соответствующего датчика. В результате проведения калибровки старые калибровочные данные (при их наличии) будут безвозвратно утеряны.

Закладка "Fitting parameters"

Закладка содержит специфические настройки алгоритма подгонки. Изменение этих настроек пользователем может привести к замедлению алгоритма и ухудшению результатов подгонки и не представляется целесообразным.

Элемент закладки	Назначение				
Reset parameters at start of fitting	Если "включено", каждая очередная подгонка начинается со значений,				
	указанных в полях "Reset to", иначе – с текущих значений.				
Reset to					
Scale parameters	Если "включено", параметры подгонки масштабируются в соответствии с				
	коэффициентами Scaling coel.				
Scaling coef.					
Use bounds	Если "включено", для параметров подгонки устанавливаются граничные				
	условия в соответствии со значениями "Lower bounds", "Upper bounds".				
Lower bounds, Upper bounds					
Use weighted fitting	Если "включено", используется алгоритм подгонки с весовыми				
	коэффициентами.				
Adjust weights	Если "включено", алгоритм подгонки с весовыми коэффициентами				
	выполняется в несколько этапов с коррекцией весов.				
Perform Nonlinearity Correction	Если "включено", ко входным данным применяется коррекция нелинейности.				
Stop conditions	Задает условия останова итерационного алгоритма подгонки.				
Algorithm	Выбор одного из вариантов алгоритмов подгонки.				

Элементы и их назначение (Рис.12):

HTM settings					
Common	Channels	Fitting parameters	Miscellaneous		
🗮 Reset	parameters at s	start of fitting	Scale parameters		
Reset to	A 1.00	T B 700.00 2 0.00	A T B Scaling coef. 1 1 1000 1 1 1		
💥 Use bo	ounds		Vse weighted fitting Adjust weights		
Lower bo	A T B Lower bounds 0.50 ± 400.00 ± -10.00 ± Perform Nonlinearity Correction				
Upper bou	unds 2.00	╡ 1700.00			
Stop cond EpsF 0.000000	itions Ep: 000	sX Max iter. 01000 x 0 x	Algorithm F FG Cheap FG FGH		
Ń	Apply change and close	S Discard cha	anges Reset to default settings and calibration data		

Рисунок 12.

Закладка "Miscellaneous"

Закладка содержит настройки, не вошедшие в другие закладки.

Элементы и их назначение	(Рис.13):
--------------------------	-----------

Элемент закладки	Назначение
Redundant read spectrum after change of IT	Специфические настройки оборудования. Изменение без необходимости
Channels switching delay	КРАЙНЕ НЕЖЕЛАТЕЛЬНО.
Read STS temperatures	Если "включено", на панели дополнительной информации основного окна
	Программы (Рис.5) отображаются показания встроенных в спектроскоп
	датчиков температуры.
Use on-screen numpad	Если "включено", для ввода числовых значений используется экранная
	цифровая клавиатура.
Max integration time, us	Установка ограничения максимального времени накопления спектроскопа в
	рабочем режиме.
No data low limit, counts	Установка минимального "порога" входных данных для проведения
	процедуры подгонки.
Max IT to calibrate sensors, us	Установка ограничения максимального времени накопления спектроскопа в
	режиме проведения калибровки датчиков.
Min interval for log recording	Минимальный временной интервал записи данных измерений температуры в
	текстовый файл (log). Позволяет ограничить скорость записи.
Min interval for chart recording	Минимальный временной интервал обновления (добавления) данных
	измерений температуры в графики и поля просмотра. Позволяет ограничить
	скорость обновления информации.

HTM settings									
Common	Channels	Fitting paran	neters	Miscella	neous				
Redundant read spectrum after change of IT Vise on-screen numpad									
Read STS temperatures Max integration time, us 1194576									
Channels switching delay, ms 20 🚽 No data low limit, counts 150 🚽									
Samples to	o average		1 📩	r	Max IT to	calibrate ser	nsors, us	1194576	
Min interv	Min interval for log recording, s								
Min interv	al for chart rec	ording, s	0.5						
¥	Apply change and close	es 🔀 Dis	card cha	nges	Rese s	t to default ettings	Re:	store factory s ind calibratior	ettings I data

Рисунок 13.

Комплект поставки

Измеритель поставляется в составе:

- 1. Блок управления
- 2. Термозонды, 4 шт.
- 3. Блок питания и кабели соединительные:
 - 3.1 блок питания, 1 шт.
 - 3.2 кабель сетевой, 1 шт.
 - 3.3 кабель HDMI mini HDMI, 1 шт.
 - 3.4 кабели оптоволоконные, 4 шт.
- 4. Инструкция по эксплуатации
- 5. Протокол испытаний

Контакты

При возникновении вопросов, пожеланий, проблем в работе с этим прибором, обращайтесь к изготовителю оборудования. Контактные данные:

Институт тепло- и массообмена Ул. П.Бровки 15, Минск, 220072, Беларусь E-mail:<u>frpd@itmo.by</u>