ФНСКС-2020 28-30 сентября 2020 года Минск, Беларусь

О роли взаимодействия наноструктурных вискерсов Al_2O_3 с макромолекулами полимеров в композиционных материалах

Ульянова Т.М $^{.1}$, Витязь П.А $^{\,2}$ Овсеенко Л.В $^{.1}$, Крутько Н.П $^{.1}$

1-Институт общей и неорганической химии НАН Беларуси, 2-Президиум НАН Беларуси

- Постоянно возрастающие требования к экологической чистоте и снижению энергоемкости технологических процессов заставляют создавать новые композиционные полимерные материалы с минеральными и органическими компонентами. Универсальный принцип разработки полимерных композиционных материалов предусматривает использование различных, в том числе гибридных, наполнителей и модификаторов.
- В последнее время для повышения эксплуатационных характеристик композитов вводят небольшие добавки наноструктурированных веществ.

<u>Цель НИР</u>

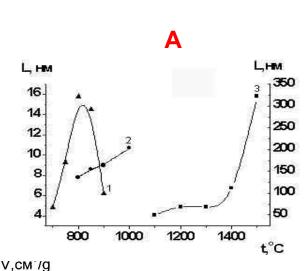
Изучение влияния наноструктурных вискерсов оксида алюминия на структуру и свойства композиционных материалов с различными полимерными матрицами.

Наноструктурные вискерсы (микронные волокна) оксида

<u>алюминия</u>

Получение: Наноструктурные волокна Al₂O₃ различной кристаллической структуры синтезировали методом, включающим насыщение раствором соли алюминия капиллярное и внутримолекулярное пространство макромолекул волокнистой целлюлозы с последующей ее термообработкой по специальному режиму. В результате сложных процессов термолиза целлюлозы, удаления воды, легколетучих продуктов и окисления углерода формировались волокна оксида алюминия, состоящие из нанозерен. При 650-700°C формировалась кристаллическая структура Al_2O_3 в y-фазе, с повышением температуры до 900°C она превращалась в 0-фазу, а при 1100°C - в α-фазу [1]. Рис. 1 целлюлозные волокна – (1),

Рис. 1 целлюлозные волокна – (1), наноструктурные волокна Al_2O_3 - (2), измельченные наноструктурные вискерсы оксида алюминия - (3)



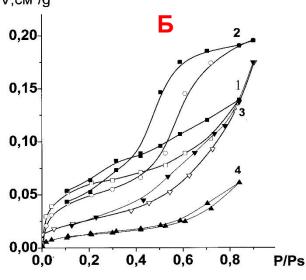
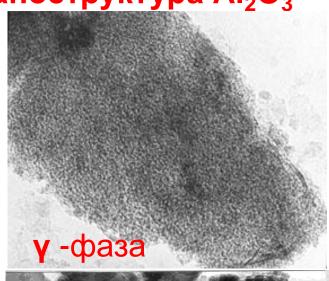
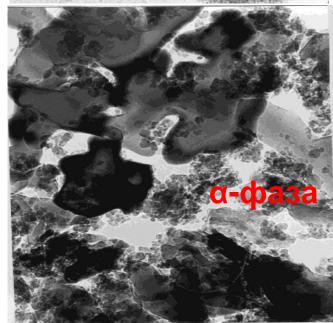


Рис. 2. Структура и свойства вискерсов


 Al_2O_3 (самая активная ү –фаза, самая прочная - α - фаза) наноструктура Al_2O_3



Изменения размеров наночастиц Al_2O_3 от температуры отжига- **A**: (1- γ), (2- θ), (3- α);

Изменение пористых характеристик вискерсов Al_2O_3 (метод БЭТ) от температуры-Б: 1-600, 2-750, 3-900 и 4-1100 $^{\circ}$ С

Наноструктурный Al₂O₃ + Эпоксидиановая матрица ЭД-20

- 1. Матрица: ЭД-20 с отвердителем (ТЭАТ) -10%,
- Армирующий элемент стальная проволока,
- Наполнитель: θ- и α-Al₂O₃, его содержание изменя-лось: 0-50 и 0-30 мас%., отверждение 160°C.
- Изучалась адгезионная прочность стальной проволоки к чистой матрице ЭД-20 и в композитах.
- Модифицирование матрицы ЭД-20 наноструктурными вискерсами Al₂O₃ (1- α-Al₂O₃, 2- θ- Al₂O₃) повышает адгезионную прочность высокомодульного армирующего компонента к матрице на 35% [2]

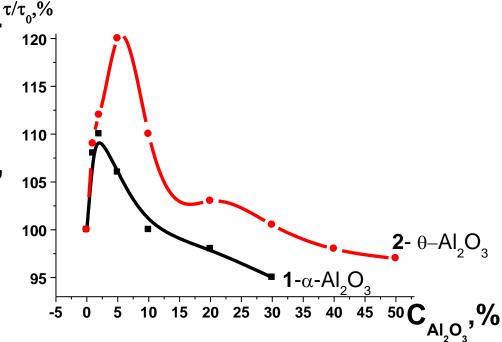
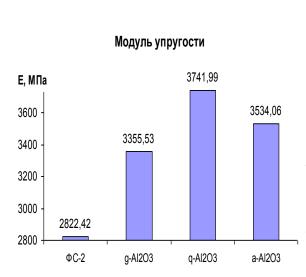
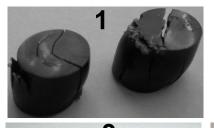


Рис. 3 Зависимость адгезионной прочности армирующего компонента к матрице ЭД-20 от содержания вискерсов Al_2O_3 :

1 - α -Al₂O₃, 2 - θ -Al₂O₃

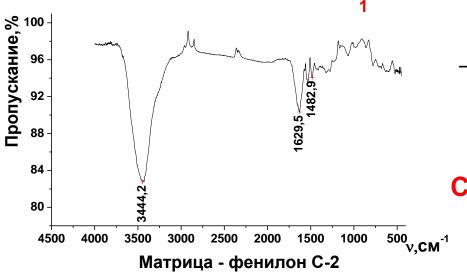

Изменение кристаллической и микроструктуры матрицы ЭД-20 и композита

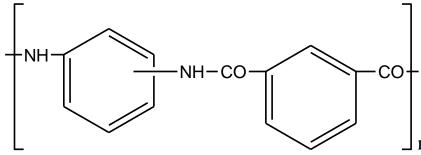

Влияние наноструктурного Al₂O₃ на свойства композитов на основе ароматического полиамида C-2

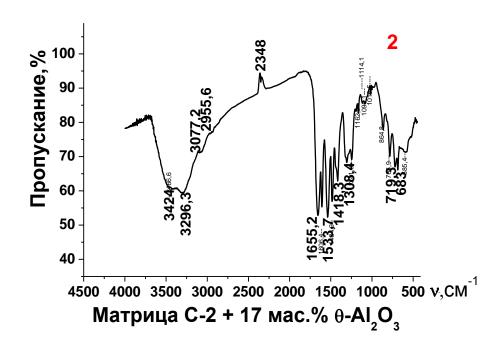
Ароматический полиамид C-2 - фенилон, сополимер изофталевой кислоты с мета- и парафенилениамином характеризируется высокими прочностными характеристиками и хорошей термостойкостью, а потому может быть перспективным для создания композитных материалов. Образцы композитов приготавливали на основе матрицы C-2 с добавкой 17 мас. % наноструктурных

вискерсов: γ -, θ - и α -Al₂O₃.

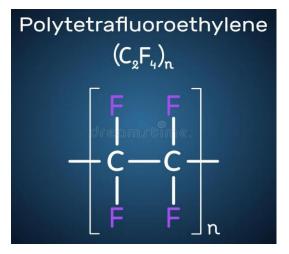
Изменение механических свойств композита по сравнению с чистым фенилоном: модуль упругости увеличился на 919 Мпа, предел текучести при сжатии увеличился на 32 МПа.[3]



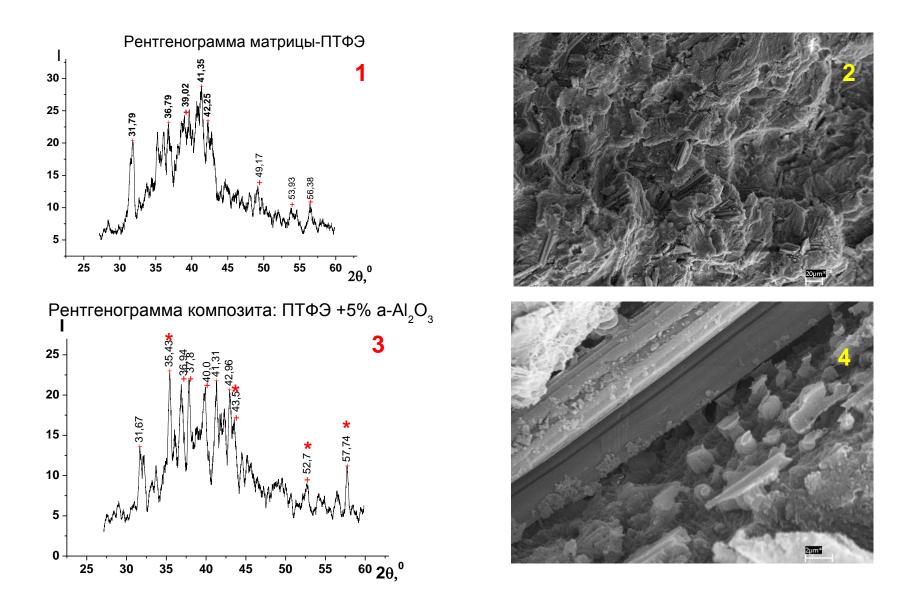



Разрушение C2-(1) и композитов, содержащих 17 мас.% : γ - Al₂O₃ (2), θ -Al₂O₃ (3)и α -Al₂O₃ (4)

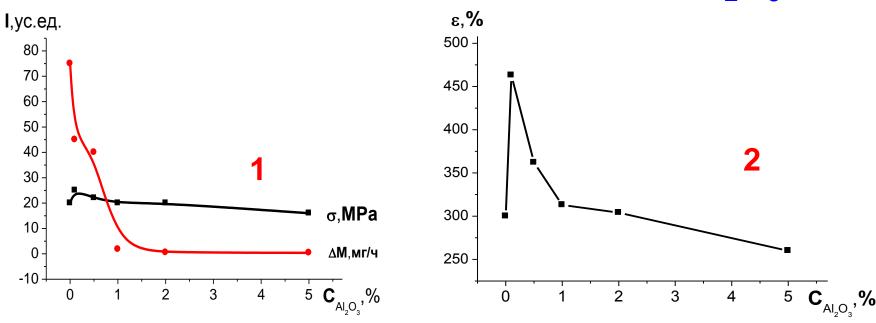
ИК спектры фенилона С-2(1) и композита (2)



Структурная формула фенилона


Исследование ИК спектров фенилона и композитов показало изменения частот колебаний группы ϑ (N-H) в области частот 3000-3600см⁻¹. Полоса ставится широкой и расщепляется на два пика, что свидетельствует о взаимодействии матрицы и наноструктурного Al_2O_3 с помощью водородных связей.

Структура и свойства композитов на основе политетрафторэтилена (ПФТЭ) с наноструктурными вискерсами Al₂O₃


Матрица ПТФЭ представляет собой синтетический фтор-полимер, состоящий из углерода и фтора. Он гидрофобен и химически инертен, поэтому его часто используют в контейнерах и трубопроводах для химически активных и агрессивных реагентов, а также в качестве покрытий и имплантатов в медицине, у него низкий коэффициент трения.

В настоящем исследовании для равномерного распределения частиц вискерсов в матрице, а также сохранения дисперсности наполнителя использовался метод совместной активация полимера и наполнителя в планетарной мельнице. Исследования структуры и свойств композитов на основе ПТФЭ показали, что введение активных наноструктурных частиц Al_2O_3 изменяет процессы рекристаллизации матрицы, повышает степень упорядоченности микроструктуры композитов [4].

Изменение кристаллической и микроструктуры матрицы ПТФЭ - 1 и 2, и композита – 3 и 4

Свойства композита на основе матрицы ПТФЭ и наноструктурного наполнителя Al₂O₃

Изменения прочности при растяжении и потери массы при износе композита – 1, удлинения при растяжении – 2 от содержания наноструктурного оксида алюминия

Увеличение концентрации наноструктурного наполнителя до 1-2 мас.% в композите из фторопласта снижает скорость износа деталей в 100-150 раз по сравнению с полимерной матрицей при сохранении деформационно-прочностных характеристик материала.

ВЫВОДЫ

- 1. На границе фаз: полимерная матрица наноструктурный наполнитель происходит физикохимическое взаимодействие компонентов с помощью функциональных: СН-, NH-, ОН-групп матрицы и водородных связей наполнителя, в результате изменяется упорядоченность макромолекул полимера и его микроструктура.
- 2. Показано, что введение активных вискерсов оксида алюминия существенно изменяет триботехнические характеристики КМ: снижается и стабилизируется на минимальном уровне износ полимерного материала, снижается и стабилизируется коэффициент трения и температура в зо-не трения.
- 3. Активные наполнители можно использовать для регулирования адгезионных свойств матрицы и армирующего компонента, что важно при получении как высокопрочных жестких, так и эластичных полимерных композиционных материалов.

Литература:

- 1. Ульянова Т.М., Крутько Н.П., Витязь П.А., Титова Л.В., Медиченко С.В. Особенности формирования структуры тугоплавких соединений на основе ZrO₂, Al₂O₃ // Доклады НАН Беларуси. Т.48. Минск. 2004, №2, 103 108.
- 2. УльяноваТ.М., Горбаткина Ю.А, Иванова-Мумжиева В.Г., Калмычкова О.Ю. Влияние наноструктурных порошков оксида алюминия на структуру и адгезионные свойства эпоксидной смолы // Тезисы докладов Международной конференции Поликомтриб-2007. Гомель: ИММС НАНБ. 2007. С. 25-26.
- 3. УльяноваТ.М., КрутькоН.П, Буря А.И., ТитоваЛ.В. Структура и свойства композитов на основе фенилона с наноструктурным наполнителем Al_2O_3 // Тезисы докладов международной конференции Поликомтриб 2011. Гомель: ИММС НАНБ. 2011. С.214-215.
- 4. Охлопкова А.А., Слепцова С.А., Парникова А.Г., Ульянова Т.М., Калмычкова О.Ю. Триботехнические и физико-механические свойства нанокомпозитов на основе ПТФЭ и оксида алюминия //Трение и износ.-2008.-Т.29, № 6.-С.635-639.